top of page

Publications

Dr. Chatterjee's publications have accrued more than 2689 citations (updated October 2024).

As a graduate student (8 publications)

​

  1. Pawar V., Jingjing L., Patel N., Kaur* N., Doetsch P.W., Shadel G.S., Zhang H., Siede W. (2009). Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae. Mech Ageing Dev. 130(8):501-8. DOI: 10.1016/j.mad.2009.06.002. PMID: 19540258. (*maiden name).

  2. Chatterjee N., Pabla R., Siede W. (2013). Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 431(2): 270-3. PMID: 23313845.

  3. Chatterjee N., Siede W. (2013). Replicating damaged DNA in eukaryotes. Cold spring Harb Prospect Biol. (Editors: Errol Friedberg, Steve Elledge, Alan Lehmann, Tomas Lindahl & Marco-Muzi-Falcone). Cold Spring Harb Perspect Biol. 5(12):a019836. DOI: 10.1101/cshperspect.a019836. PMID: 24296172.

  4. Chatterjee N., Santillan B.A., Wilson J.H. (2012). Microsatellite Repeats: Canaries in the Coalmine. Stress-induced mutagenesis. David Mittelman (Ed.). Springer ISBN 978-1-46146279-8. Pp 119-150. DOI: 10.1007/978-1-4614-6280-4_7.

  5. Chatterjee N., Lin Y., Santillan B.A., Yotnda P., Wilson J.H. (2015). Environmental stress induces trinucleotide repeat instability in human cells. PNAS. 112(12): 3764-9. DOI: 10.1073/pnas.1421917112. PMID: 25775519​Spotlighted by Chemical Research in Toxicology. Research Spotlight, “Environmental stress causes mutagenesis of trinucleotide repeats”, Chemical Research in Toxicology. This article was also highlighted in the world press and on social media.

  6. *Chatterjee N., Lin Y., Yotnda P., Wilson J.H. (2016). Environmental stress induces trinucleotide repeat instability in human cells by alt-Nonhomologous end joining repair. JMB. 428(15):2978-80. DOI: 10.1016/j.jmb.2016.06.004. PMID: 27318194. *Corresponding author

  7. *Chatterjee N., Lin Y., Wilson J.H. (2016). Mismatch repair enhances convergent transcription-induced cell death at trinucleotide repeats by activating ATR. DNA Repair. 42: 26-32. DOI: 10.1016/j.dnarep.2016.03.016.* Corresponding author

  8. *Chatterjee N., Lin Y., Wilson J.H. (2016). Fanconi anemia pathway regulates convergent transcription-induced cell death at trinucleotide repeats in human cells. PostDoc J. May; 4(5): 46–54, DOI: 10.14304/surya.jpr.v4n5.1. PMID: 27595121. *Corresponding author

 

As a post-doctoral trainee (11 publications)

​

  1. Chatterjee N., Williams C., Bhar S. and A. Bertuch (2015). A novel radiosensitivity phenotype in Shwachman-Diamond Syndrome is mediated by ER stress response. Blood. Dec 15; 126 (23): 3618-3618. DOI: 10.1182/blood.V126.23.3618.3618.

  2. Sail V.#, Rizzo A.A.#, Chatterjee N.#, Dash R.C., Ozen Z., Walker G.C., Korzhnev D.M., Hadden K. (2017).  Identification of small molecule translesion synthesis inhibitors that target the Rev1-CT/RIR protein-protein interaction. ACS Chem Biol. 12(7): 1903-1912. DOI: 10.1021/acschembio.6b01144. PMID: 28541665.# Co-first author

  3. Harris C. and N. Chatterjee. (2017). Translesion Synthesis: An emerging new target during chemotherapy. PostDoc J. 5(9) 3-10. DOI: 10.14304/SURYA.JPR.V5N9.2. *Corresponding author

  4. *Chatterjee, N. (2017). Are Shwachman-diamond syndrome patients radiosensitive? Postdoc J. 5(3), 14-24. *Corresponding author

  5. Yamanaka K.#, Chatterjee N.#, Hemann M., Walker G.C. (2017). Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy? Plos Genet. 13(8): e1006842. DOI: org/10.1371/journal.pgen.1006842. PMID: 28817566. # Co-first author

  6. *Chatterjee N. and Walker G.C. (2017). Mechanisms of DNA damage and repair. Env & Mol Mutagenesis. 58(5): 235–263. DOI 10.1002/em.22087. PMID: 28485537. (Invited Article). * Corresponding authorIt is the top downloaded article in the publication history of EMM

  7. Rizzo A.A., Vassel F.M., Chatterjee N., D’Souza S., Li Y., Hao B., Hemann M.T., Walker G.C. and D.M. Korzhnev. (2018). Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex. PNAS. 115(35):E8191-E8200. DOI: 10.1073/pnas.1801149115. PMID: 30111544.

  8. Dash R.C., Ozen Z., McCarthy K.R., Chatterjee N., Harris C.A., Rizzo A.A., Walker G.C., Korzhnev D.M., and M.K. Hadden. (2019). Virtual Pharmacophore Screening Identifies Small Molecule Inhibitors of the Rev1-CT/RIR Protein-Protein Interaction. ChemMedChem. 4;14(17):1610-1617. DOI: 10.1002/cmdc.201900307. PMID: 31361935.

  9. Wojtaszek J.#, Chatterjee N.#, Najeeb J.# Lee M., Ramos A., Bian K., Xue J., Li D., Hemann M.T., Hong J., Walker G.C. and P. Zhou. (2019). A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. CELL. 178(1):152-159.e11. DOI: org/10.1016/j.cell.2019.05.028. PMID: 31178121. # Co-first author. Spotlighted by MIT News. Recommended by f1000. Broadcasted by 6 other news outlets. Highlighted in Nature. Spotlighted in Molecular Cell

  10. Asik E., Chatterjee N. and A.A. Bertuch. (2020). Homologous recombination defects in Shwachman-Diamond syndrome and Diamond-Blackfan anemia. BioRxiv. doi: https://doi.org/10.1101/2020.08.13.250068.

  11. Chatterjee N., D’Souza S., Bursch P., Harris C.A., Shabab M., Heliniski G., Verdine G.L., Jonas O. and Walker G.C. (2020). A stapled Pol k peptide targets Rev1 and inhibits translesion synthesis. Environ Mol Mutagen. 61(8):830-836. doi: 10.1002/em.22395. PMID: 32573829.

 

As an independent investigator (8 publications)

​

  1. *Chatterjee N., Whitmann M., Harris C.A., Lee M., Jonas J., Lien E.C., Heiden M.G.V., Hong J., Zhou P., Hemann M.T. and G.C. Walker. (2020). REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. PNAS. 117 (46) 28918-28921. DOI.org/10.1073/pnas.201606411. PMID: 33168727. *Corresponding author. Spotlighted at MIT News. Spotlighted at Cancer Discovery

  2. Ikeh KE, Lamkin EN, Crompton A, Deutsch J, Fisher KJ, Gray M, Argyle DJ, Lim WY, Korzhnev DM, Hadden MK, Hong J, Zhou P, Chatterjee N. (2021). REV1 Inhibition Enhances Radioresistance and Autophagy. Cancers. 13(21):5290. DOI: 10.3390/cancers13215290. PMID: 34771454.

  3. Victor J, Deutsch J, Whitaker A, Lamkin EN, March A, Zhou P, Botten JW, Chatterjee N. (2021). SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Biochem Biophys Res Commun. 19;579: 141-145. DOI: 10.1016/j.bbrc.2021.09.024PMID: 34600299. Spotlighted at News Medical Life Sciences

  4. Bouffard NA, Lee K, DeLance NM, Clason T, Chatterjee N, Taatjes DJ. (2022). Novel post-acquisition image processing to attenuate red blood cell autofluorescence for quantitative image analysis. Histochem Cell Biol. 159(2):119-125. DOI: 10.1007/s00418-022-02159-0. PMID: 36260111.

  5. McPherson KS, Rizzo AA, Erlandsen H, Chatterjee N, Walker GC and Korzhnev DM. (2023). Evolution of Rev7 interactions in eukaryotic TLS DNA polymerase Polζ. JBC. 299(2):102859. DOI: https://doi.org/10.1016/j.jbc.2022.102859. PMID: 36592930.

  6. Victor J, Jordan T, Punam Bisht, Lamkin E, Ikeh K, March A, Frere J, Crompton A, Allen L, Fanning J, Lim WY, Muoio D, Fouquerel E, Martindale R, Dewitt J, deLance N, Taatjes D, Dragon J, Dmitry Korzhnev, Kyle Hadden, Holcombe R, Greenblatt M, Rudolf Jaenish, Kaminsky D, Hong J, Zhou P, tenOever B, Chatterjee N. (2022). SARS-CoV-2 hijacks host cell genome instability pathways. Res Sq [Preprint]. DOI: 10.21203/rs.3.rs-1556634/v1. PMID: 35441168. Under Revision Nature Communications

  7. Zaino AM, Dash RC, James SJ, MacGilvary N, Crompton A, McPherson KS, Stanzione M, Korzhnev DM, Dyson NJ, Chatterjee N, Cantor SB, Hadden MK. (2024). Lead compound profiling for small molecule inhibitors of the REV1-CT/RIR Translesion synthesis Protein-Protein interaction. Bioorg Med Chem. 15;106:117755. DOI: 10.1016/j.bmc.2024.117755. PMID: 38749343.

  8. DeCleene NF, Asik E, Sanchez A, Williams CL,  Kabotyanski EB, Zhao N, Chatterjee N, Miller K, Wang YH, Alison A Bertuch. (2024) RPS19 and RPL5, the most commonly mutated genes in Diamond Blackfan anemia, impact DNA double-strand break repair. bioRxiv 2024.10.10.617668; doi: https://doi.org/10.1101/2024.10.10.617668

bottom of page